基于BiGRU和注意力机制的多标签文本分类模型
饶竹一 张云翔
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

饶竹一 张云翔,. 基于BiGRU和注意力机制的多标签文本分类模型[J]. 计算机研究与应用,2020.3. DOI:.
摘要:
文本分类是自然语言处理的重要组成部分,在电网相关的网络文本情感识别中,针对其文本没有固定语法及书写格式,且情感信息分散于文本各个位置的问题,提出一种基于双向门控循环神经网络(BiGRU)和注意力机制的多标签文本分类模型。首先,使用预训练词向量提取网络文本的深层次信息特征;其次,根据注意力机制将分析出的深层次信息特征加以相应的权重;最后,使用BiGRU对文本特征信息进行分类。在Kaggle的Toxic Comment Classification数据集上进行的实验结果表明:对于情感识别的准确率高达98%。
关键词: 情感识别;双向门控循环神经网络;网络文本
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。