基于动态RBF神经网络的广义电力负荷建模
黄俊铭 朱建全 庄远灿
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

黄俊铭 朱建全 庄远灿,. 基于动态RBF神经网络的广义电力负荷建模[J]. 电网技术研究,2018.9. DOI:.
摘要:
针对新形势下分布式电源对综合负荷特性的影响,提出一种基于动态径向基函数(radical basis function,RBF)神经网络的广义电力负荷建模新方法。利用动态RBF神经网络描述综合负荷功率的动态微分变化过程,可以深度揭示广义电力负荷的动态特性。利用状态估计误差对神经网络的权值进行动态更新,并对不满足持续性激励条件的神经元的权值进行限制,使所建立的动态RBF神经网络模型参数理论上可以收敛至最优值。分别应用仿真平台和实际系统数据进行测试,结果表明所提方法的有效性。
关键词: 广义电力负荷;动态建模;动态RBF神经网络;收敛性
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。