基于MFOA-GRNN模型的年电力负荷预测
李冬辉 尹海燕 郑博文
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

李冬辉 尹海燕 郑博文,. 基于MFOA-GRNN模型的年电力负荷预测[J]. 电网技术研究,2018.9. DOI:.
摘要:
精确的年电力负荷预测为电力建设和电网运行提供可靠的指导。受多种因素的影响,年电力负荷曲线呈现出非线性特性,因此年电力负荷预测问题的解决需要建立在非线性模型的基础之上。广义回归神经网络(GRNN)已被证明在处理非线性问题上是非常有效的。该网络只有一个扩展参数,如何确定适当的扩展参数是使用GRNN进行预测的关键点。提出了一种将多种群的果蝇优化算法(MFOA)和GRNN相结合的混合年电力负荷预测模型,用以解决上述问题。其中,MFOA用作为GRNN电力负荷预测模型选择适当的扩展参数。最后通过模拟实验数据分析,MFOA-GRNN模型的年电力负荷预测平均绝对百分比误差为0.510%,均方误差为0.281。并且将其结果与差分进化的支持向量机模型(DE-SVM)、粒子群优化的GRNN模型(PSO-GRNN)、以及果蝇优化的GRNN模型(FOA-GRNN)的预测结果进行了比较。最终得出,文中所提出的MFOA-GRNN模型在年电力负荷预测中的预测性能优于上述3种模型。
关键词: 年电力负荷预测;广义回归神经网络;参数优化;多种群;果蝇优化算法;相对误差
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。