基于样本扩充的Faster R-CNN电网异物监测技术
史晋涛1 李喆1,2 顾超越1 盛戈皞1,2 江秀臣1
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

史晋涛1 李喆1,2 顾超越1 盛戈皞1,2 江秀臣1,. 基于样本扩充的Faster R-CNN电网异物监测技术[J]. 电网技术研究,2020.4. DOI:.
摘要:
电网公司的巡检工作主要依靠人工完成,需要大量人力物力,且实时性较差。针对该问题,提出一个基于区域推荐卷积神经网络的图像目标监测系统,其中核心算法为Faster R-CNN算法。利用深度学习对摄像装置所采集的现场图像进行分析,执行目标检测任务,若发现威胁电网安全运行的隐患将及时通知工作人员。深度学习发挥其优势需要有效样本达到一定数量,包含隐患的真实样本较少,有些异物种类甚至没有合适的样本,往往不能满足深度学习算法的训练要求。因此研究了一种用于扩充样本的样本生成算法,将隐患目标与背景图像按照一定规则进行融合,达到批量扩充样本集的目的。使用该算法生成的样本进行测试,测试结果表明扩充后的训练集可以使系统性能得到一定提升。此外,通过测试发现,对训练集做一定的预处理可以提升模型的识别性能。
关键词: 电力巡检;Faster R-CNN;数字图像处理;高斯滤波;泊松融合
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。