基于季节性负荷自适应划分及重要点分割的多分段短期负荷预测
彭显刚1 潘可达1 张丹1 刘艺1 林志坚2
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

彭显刚1 潘可达1 张丹1 刘艺1 林志坚2,. 基于季节性负荷自适应划分及重要点分割的多分段短期负荷预测[J]. 电网技术研究,2020.5. DOI:.
摘要:
针对季节性电力负荷划分不准确及温度、湿度对电力负荷的动态性影响,提出一种基于季节性负荷自适应划分及重要点分割的多分段短期负荷预测模型。采用聚类与CART树相结合的方法,根据地区历史负荷数据自适应的确定当地季节性负荷划分规则;使用非参数核密度估计方法提取季节典型日负荷曲线,并基于划分结果对各季负荷曲线进行重要点分割;同时根据分割结果,采用基于皮尔逊相关系数加权的相似系数,对各时段负荷进行参考日的筛选,以确定预测模型的输入量,最后提出一种结合纵横交叉算法参数优化的鲁棒极限学习机进行多分段预测模型的建立。通过实例仿真分析,验证了所提方法提高预测精度的有效性。
关键词: 聚类分析;CART决策树;重要点分割;改进鲁棒极限学习机;短期负荷预测
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。