基于变分法对一类非线性扩散方程解析解研究
王娇苏 李君 秦新强
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

王娇苏 李君 秦新强,. 基于变分法对一类非线性扩散方程解析解研究[J]. 数学应用,2018.5. DOI:.
摘要:
本文分别针对一类扩散系数为非线性指数函数和幂函数的扩散方程,基于变分原理中的泛函极值理论分别提出了求解该方程Dirichlet边界和Neumann边界问题解析解的新方法,并证明了新方法是泛函问题极值解的充要性.以非饱和土壤水分运动问题为背景,给出了积水和恒通量条件下水平吸渗问题的解析解,并通过数值算例将解析解与数值解进行了比较分析,结果表明本文方法得到的解析解能够准确预测非饱和土壤水分水平吸渗问题的土壤含水量分布,是一种有效方法。因此本文方法为求解这一类非线性扩散方程提供了一种有效的新方法.
关键词: 非线性;扩散方程;泛函极值;土壤水分运动;解析解
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。