基于BP神经网络的北京夏季日最大电力负荷预测方法
李琛1 郭文利2 吴进3 金晨曦2
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

李琛1 郭文利2 吴进3 金晨曦2,. 基于BP神经网络的北京夏季日最大电力负荷预测方法[J]. 气候变化研究,2019.2. DOI:.
摘要:
利用2006~2017年北京夏季(6~8月)逐日最大电力负荷和同期气象资料,分析最大电力负荷与各种气象因子的相关性,基于BP(BackPropagation)神经网络算法,建立了两种夏季日最大电力负荷预测模型并对比。结果表明:北京夏季周末基础负荷远小于工作日,剔除时应加以区分;气象因子对气象负荷的影响具有累积效应,累积2 d时两者的相关性最强;结合实际,根据自变量的不同分别建立了两种日最大电力负荷预测模型;经实际预测检验,两种预测模型均取得了较好的预测效果,能够满足电力部门的实际需求,其中自变量中加入前一日气象负荷的模型效果更优。
关键词: BP神经网络;日最大电力负荷;累积气象因子;预测模型
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。