基于不同建模方法的湿地土壤有机质含量多光谱反演
陈思明1,2,3 毛艳玲4,3 邹小兴1,3 丁卉1,3 邹双全1,3
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

陈思明1,2,3 毛艳玲4,3 邹小兴1,3 丁卉1,3 邹双全1,3,. 基于不同建模方法的湿地土壤有机质含量多光谱反演[J]. 土壤研究,2018.8. DOI:.
摘要:
为了提高湿地土壤有机质含量的预测精度,以闽江鳝鱼滩湿地土壤为研究对象,通过分析多光谱不同波段反射率与土壤有机质含量的相关性,引入OIF指数提取显著性波段,然后基于全波段和显著性波段,采用多元逐步回归方法(MLSR)、BP神经网络(BPNN)和支持向量机(SVR)3种方法,构建湿地土壤有机质含量的反演模型,并进行模型验证与对比,确定最优的土壤有机质含量反演方法。结果表明:各波段的反射率(Spectral reflectance,R)与土壤有机质含量存在着负相关关系,147波段组合的OIF指数较高,波段间的独立性强,能有效反映数据内的信息;采用MLSR、BPNN和SVR这3种方法进行建模。在全波段中,SVR的建模效果最显著,BPNN次之,MLSR的建模效果最差。在显著性波段中,BPNN的建模效果最显著,SVR次之,MLSR的建模效果最差;对比基于全波段与显著性波段的建模效果,发现基于全波段的预测效果更为显著,最佳模型为基于全波段的土壤有机质含量支持向量机模型,但利用显著波段建模,可降低波段间的信息重叠,且模型简单、运算量少等特点。该研究可行有效,对湿地土壤有机质含量的快速、大范围精准估测提供技术可行性。
关键词: 土壤有机质;多光谱;多元逐步回归;BP神经网络;支持向量机回归;湿地
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。