基于线性预测梅尔频率倒谱系数的设备来源识别
秦天芸 王让定 裴安山
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

秦天芸 王让定 裴安山,. 基于线性预测梅尔频率倒谱系数的设备来源识别[J]. 数据与科学,2018.9. DOI:.
摘要:
由于手机录音设备的不断普及,各种功能强大的数字媒体编辑软件的出现,鉴别手机录音设备所录制的音频数据的真伪已经成为数字取证技术关注的热点问题。本文将线性预测系数(LPC)和梅尔频率倒谱系数(MFCC)特征进行结合,得到新的特征,即线性预测梅尔频率倒谱系数(LPMFCC)。然后将LPMFCC与能量特征结合得到的组合特征作为手机的指纹,选择支持向量机LIBSVM作为分类器,在两种语音库上进行手机设备来源识别实验。实验表明,LPMFCC特征作为手机指纹进行实验的识别率相对于LPC提升了12%,相对于MFCC提升了2%,并且LPMFCC与能量特征的组合特征相比于单一的LPMFCC特征对手机录音设备的来源更有区分性。
关键词: 手机来源识别;LPMFCC;组合特征;支持向量机;
关键词: 手机来源识别LPMFCC组合特征支持向量机
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。