一种改进的K均值微博热点话题发现方法
何诺 马苗苗
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

何诺 马苗苗,. 一种改进的K均值微博热点话题发现方法[J]. 数据与科学,2019.1. DOI:.
摘要:
本文对于K均值聚类算法应用在大量微博数据集中聚类效率低,正确性不高的问题,提出了一种改进的K均值微博热点话题发现方法。在对微博特有属性的研究基础上,利用微博转发关系解决微博内容碎片化导致的聚类准确性及效率较低的问题;实验结果表明本文提出的改进的K均值聚类算法比传统的K均值热点话题发现,准确率提升了11.3%,聚类比较次数提升了27.5%。
关键词: 微博转发关系K均值微博话题热点发现Word2vec
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。