基于无人机图像的风力发电机叶片缺陷识别
仇梓峰 王爽心 李蒙
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

仇梓峰 王爽心 李蒙,. 基于无人机图像的风力发电机叶片缺陷识别[J]. 发电技术与研究,2018.9. DOI:.
摘要:
针对风力发电机叶片人工检测低效,缺陷诊断难的问题,提出一种基于无人机与图像处理的风力发电机叶片缺陷识别方法。通过Halcon 12与Visual Studio 2015的联合开发,实现图像处理流程、检测结果输出以及缺陷回放等功能,包括相机标定、通过快速自适应加权中值滤波处理图像、动态阈值分割叶片图像缺陷特征,利用区域处理识别裂纹和砂眼等缺陷,并对缺陷进行分类与测量以及输出对叶片质量的分析报告等,实现风力发电机叶片表面缺陷的自动检测功能。通过实例验证了该方法在风力发电机叶片表面缺陷检测中的较高精确性与算法稳定性。
关键词: 风力发电机缺陷检测无人机图像处理
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。