基于用户信任的协同推荐算法研究与分析
徐吉1 李小波2 许浩2
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

徐吉1 李小波2 许浩2,. 基于用户信任的协同推荐算法研究与分析[J]. 数据与科学,2019.4. DOI:.
摘要:
协同过滤算法一般根据用户的评价信息来推测用户的喜好,但受到数据稀疏问题的影响,许多时候无法得到较为理想的推荐结果;除此之外,一般协同推荐算法忽略了用户兴趣的动态变化;考虑到传统协同过滤算法存在上述问题,本文进行了研究,并提出了改进后的协同过滤推荐算法。整个算法的具体执行过程如下所示:第一步是根据用户偏好构建一个兴趣迁移模型,然后依据具体的评分时间对多个项目评分进行有速度差异的衰减,衰减完成之后得到项目评分矩阵,并将其应用到相似度的计算中;采用这种方式能够有效地解决用户兴趣变化引起的、推荐结果准确性降低的问题。然后是构建一个合适的用户信任度模型,根据T-采用率、可信度来对用户的信任度进行计算。最后将得到的信任度与基于时间的相似度进行线性组合,依据其权重大小进行最近邻选择与项目评分,并通过实验的方式,证明算法Improvement-CF能够有效提升推荐结果的准确性。
关键词: 协同推荐算法;用户兴趣变化;用户信任模型
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。