基于XGBoost集成的可解释信用评分模型
刘彧祺1 张智斌1 陈昊昱2 刘杨3 邵党国1 熊馨1 马磊1,3
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

刘彧祺1 张智斌1 陈昊昱2 刘杨3 邵党国1 熊馨1 马磊1,3,. 基于XGBoost集成的可解释信用评分模型[J]. 数据与科学,2019.7. DOI:.
摘要:
信用评分模型是在银行信贷中提供正确指导决策的有效工具。在过去几十年中,信用评分已成为金融机构日益关注的问题,目前仍是一个热门的研究课题。但是,大多数研究中追求模型的性能表现,但忽视了决策制定过程的问责机制和信任机制。本文构建的基于XGBoost集成的可解释信用评分模型在性能良好的情况下同时兼顾模型的可解释性。选择AUC为模型性能主要评价指标,在对比实验中也加入了其他两个常用评价指标:准确率和F值。结果表明,所提出的模型的平均性能优于其他比较算法。在基分类器选择,特征选择,模型集成中均考虑到了模型的可解释性。最后,提供了模型整体及对具体样本的决策解释。
关键词: 信用评分;可解释性;XGBoost;集成学习
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。