融合时空信息的端对端目标跟踪算法
陈凯峰 梁鉴如
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

陈凯峰 梁鉴如,. 融合时空信息的端对端目标跟踪算法[J]. 数据与科学,2019.9. DOI:.
摘要:
视觉目标跟踪是计算机视觉领域的一个基本问题。目前,采用深度卷积方法的相关滤波器(DCF)在目标跟踪领域取得了优秀的成果。然而,大多数现有的跟踪器仅考虑当前帧的外观特征,几乎不考虑目标运动和帧间信息,不能很好地解决诸如遮挡、阴影和变形等问题。因此,我们将利用连续帧中丰富的运动信息来提高跟踪性能。首先,我们将光流信息,特征提取和相关滤波表示为深度学习网络中的相关特殊层,从而能够进行端对端深度学习网络的训练。然后,提出了一种全新的时空注意力机制,通过时空注意力机制的加权,将预定间隔的历史特征图相融合并与当前的特征图进行自适应聚合。最后,在公共数据进行了大量实验,得到了满意的结果。
关键词: DCF滤波器;光流信息;时空注意力机制;端对端
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。