基于加权距离进行密度计算的聚类方法研究
杨威 龙华
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

杨威 龙华,. 基于加权距离进行密度计算的聚类方法研究[J]. 数据与科学,2019.10. DOI:.
摘要:
本文主要研究了初始聚类中心选取对于K-means算法性能的影响,并通过更好的初始化技术来增强算法性能。研究发现,在进行K-means聚类时,通过使用加权距离密度计算方法,对数据集的密度计算,使得在传统K-means聚类算法过程局部最优、簇内方差较大所带来的聚类结果不佳的缺陷得到了显著改善。实验结果表明,在使用本改进方法进行聚类时,聚类结果的簇内方差较传统方法降低了15%左右,对聚类中心的聚集性更加紧密,使算法性能得到了较好的提升。
关键词: K-means算法;密度计算;加权距离;簇质心
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。