融合CNN和LDA的短文本分类研究
张小川 余林峰 桑瑞婷 张宜浩
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

张小川 余林峰 桑瑞婷 张宜浩 ​,. 融合CNN和LDA的短文本分类研究[J]. 软件工程研究,2018.9. DOI:.
摘要:
应用卷积神经网络分类文本是自然语言处理领域的研究热点,针对神经网络输入矩阵只提取词粒度层面的词向量矩阵,忽略了文本粒度层面整体语义特征的表达,导致文本特征表示不充分,影响分类准确度的问题。本文提出一种结合word2vec和LDA主题模型的文本表示矩阵,结合词义特征和语义特征,输入卷积神经网络进行文本分类,以丰富池化层特征,达到精确分类的效果。对本文提出模型进行文本分类实验,结果表明,本文算法相比传统特征输入的卷积神经网络文本分类,在F度量值上取得一定程度的提升。
关键词: 卷积神经网络主题模型LDAword2vec
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。