卷积神经网络在图像识别中的应用
圣文顺 孙艳文 ​
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

圣文顺 孙艳文 ​,. 卷积神经网络在图像识别中的应用[J]. 软件工程研究,2019.5. DOI:.
摘要:
随着医学成像技术的不断发展,病理识别在医学诊断过程中的作用越来越重要。人工智能领域的机器学习可以帮助完成医学图像诊断的自动识别,数字化地辅助医学诊断过程,同时降低医务工作者的工作量。卷积神经网络(CNN)是近年发展起来的一种非常有效的机器学习方法,属于深度学习的范畴,它能够完整地模拟人类的图像识别过程,并且已经在图像识别领域取得了优异的成绩。本文将卷积神经网络应用于病理图像的识别中,同时对病理图片进行了采集、整理和智能学习,完成并分析了算法对比实验,最终实现了对病理图像的优化识别,提高了病理图像的识别率,验证了算法的有效性。
关键词: 卷积神经网络;病理图像;深度学习;医学成像
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。