社交属性网下基于链路预测及节点度的推荐算法
江若然 张玲玲
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

江若然 张玲玲,. 社交属性网下基于链路预测及节点度的推荐算法[J]. 当代管理,2019.6. DOI:.
摘要:
社交网络的出现使现代人们沟通交流的方式发生了颠覆性的变化。不断有研究者从社会角度和技术角度对社交网络进行研究。链路推荐是一个非常重要的任务,一方面增强网络内部联系,另一方面改善用户体验。目前,在考虑网络结构信息和节点属性信息的社交属性拓展网络模型中链路预测算法中还没有很好的综合利用两种信息对链路生成的影响。本文在基于局部信息的链路预测算法下考虑不同类型共同邻居节点对链路生成的影响,并将其应用于社交属性拓展网络模型中。在改进的算法中,用户共同邻居节点和属性共同邻居节点对链接相关性的影响被给予不同的处理。在Google+社交数据集的实验表明,在社交属性拓展网络模型下,本文改进算法优于不考虑共同邻居节点影响的算法。在总结实验结果中用户共同邻居节点和属性共同邻居节点对链接生成的不同影响后,对不同类型节点的处理方法提出指导性建议。
关键词: 链路预测社交属性网节点的度推荐系统共同邻居
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。