基于注意力机制的LSTM股价趋势预测研究
林杰 康慧琳
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

林杰 康慧琳,. 基于注意力机制的LSTM股价趋势预测研究[J]. 管理与科学,2020.1. DOI:.
摘要:
针对中国股票市场,提出了一种基于注意力机制的LSTM股价趋势预测模型。选取42只中国上证50从2009年到2017年的股票数据为实验对象,根据股票市场普遍认可的经验规则,分别对每个技术指标进行量化处理得到股票涨跌的趋势数据,并和交易数据混合作为预测模型的输入,然后使用基于注意力机制的LSTM模型提取股价趋势特征进行预测。实验结果表明:引入股票离散型趋势数据到预测模型中,能够在已有交易数据和技术指标的基础上提升预测精确度,与传统的机器学习模型SVM和单一的LSTM模型相比,基于注意力机制的LSTM模型具有更好的预测能力。
关键词: 股价趋势预测;LSTM;注意力机制
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。