基于电子作业挖掘的学生学习预警模型研究
张笑非 段先华 刘镇 钱萍
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

张笑非 段先华 刘镇 钱萍 ​,. 基于电子作业挖掘的学生学习预警模型研究[J]. 软件工程研究,2019.9. DOI:.
摘要:
混合式教学的普及使得电子作业成为一种评价学生学习效果的重要数据来源,利用机器学习对电子作业进行建模是对学生学习预警的一种有益探索。本文在对电子作业进行分词和向量化基础上,通过k-means聚类和轮廓系数来判断其语义的多样性,通过计算文档向量相似性矩阵的网络效率来评价电子作业的中心性。实验结果显示,该方法可以有效寻找电子作业聚类效果最优时的簇类多样性,也可以有效评价电子作业相似度的网络中心性。因此,该方法作为一种学生学习预警模型,可以对电子作业文档的多样性和中心性给出客观的总体评价。
关键词: 文档向量k-means聚类轮廓系数文档相似度图论效率
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。