可积系统多孤子解的全反演对称表达式
楼森岳
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

楼森岳,. 可积系统多孤子解的全反演对称表达式[J]. 现代物理学报,2020.2. DOI:.
摘要:
多孤子解是非线性数学物理系统的基本激发模式.文献中存在各种类型的表达式,如广田(Hirota)形式,朗斯基(Wronskian)或双朗斯基形式和法夫(Phaffian)形式.最近在多地系统的研究中,我们发现使用一种全新但等价的形式具有极为简洁和方便的优点.本文主要综述多种类型可积非线性系统的多孤子解的新型表达式,同时对SK方程、非对称NNV系统、修正Kd V型、s G型、AKNS模型和全离散H1系统也给出一些文献中还没出现过的新的更为简便的表达式.新的孤子表达式通常具有显然的时空全反演(包括时间反演、空间反演、孤子初始位置反演及电荷共轭反演(正反粒子反演))对称性.这种具有显式全反演对称性的表达式在研究多地非局域系统和局域和非局域可积系统的各种共振结构时具有很大的优越性.
关键词: 可积系统;多孤子解;全反演对称性;多地系统
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。