基于深度学习与二维离散小波分解特征相融合的adaboost人脸识别模型
黄健
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

黄健 ​,. 基于深度学习与二维离散小波分解特征相融合的adaboost人脸识别模型[J]. 软件工程研究,2020.4. DOI:.
摘要:
为了提高人脸识别的效率,本文提出了一种将小波分析、深度学习和adaboost分类器相结合的人脸识别方法。传统的基于小波变换的人脸识别算法仅仅提取了小波分解的低频分量用于分类图像的特征,为了更有效地提取人脸图像特征,提出了一种将传统特征和深度特征相融合的人脸识别算法。首先,通过二维离散小波变换函数对人脸图像进行二维离散小波变换,提取出人脸图像的低频部分作为特征值,接着通过深度残差网络提取人脸深度特征,最后将融合后的特征应用adaboost分类器进行分类识别。通过在ORL人脸库实验证明,融合后的方法能有效地提高分类识别率。
关键词: 小波变换人脸识别残差网络Adaboost分类
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。