基于EEMD和LSTM的短期风速预测模型研究
陆冰鉴1 周鹏1 王兴1,2 周可1
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

陆冰鉴1 周鹏1 王兴1,2 周可1 ,. 基于EEMD和LSTM的短期风速预测模型研究[J]. 软件工程研究,2020.5. DOI:.
摘要:
由于风具有较强的阵性和局地性,影响因子较多,利用机器学习相关技术进行风速的预测,往往会受这些影响,降低预测的准确率,特别是对于瞬时大风的预测,准确度普遍不高。针对上述问题,提出一种基于集合经验模态分解法(EEMD)和长短期记忆神经网络(LSTM)相结合的短期风速预测模型,该模型采用EEMD将风速序列分解为多个频域相对稳定的子序列,进而改善经验模态分解法(EMD)模态混叠现象,再采用LSTM构建预测模型,实现短期风速预测。该方法与其他预测方法相比,预测的精度更高,误差更小,验证了本文预测方法的可行性和有效性。
关键词: 风速预测;集合经验模态分解;经验模态分解;长短期记忆神经网络
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。