基于BP神经网络辨识模型的PEMFC系统建模
柯超1 甘屹1 王俊1 朱荣杰2 陈伟2 ​
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

柯超1 甘屹1 王俊1 朱荣杰2 陈伟2 ​,. 基于BP神经网络辨识模型的PEMFC系统建模[J]. 软件工程研究,2020.7. DOI:.
摘要:
为分析燃料电池系统特性,采用BP神经网络结构辨识质子交换膜燃料电池系统模型,模型输入为系统实际输入,模型输出为电堆输出电压和电堆工作温度。由于PEMFC系统是一个时变非线性系统,采用一种串-并联前向神经网络辨识结构模型,将模型前几个时刻输出作为模型输入,使得静态网络结构具有动态特性。BP网络模型通过PEMFC系统所得到的实验数据进辨识。训练完成后BP网络模型输出与实际系统输出基本一致,结果表明BP网络模型能够有效反映质子交换膜燃料电池系统输出电压和电堆温度特性。
关键词: 质子交换膜燃料电池;BP神经网络;非线性系统建模;模型辨识
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。