深度信念网络优化BP神经网络的交通流预测模型
孔繁辉1 李健1,2
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

孔繁辉1 李健1,2,. 深度信念网络优化BP神经网络的交通流预测模型[J]. 当代管理,2020.7. DOI:.
摘要:
为提高BP神经网络预测精度,基于深度学习理论提出一种深度信念网络(DBN)算法优化传统BP神经网络预测模型。该预测算法由多层限制玻尔兹曼机(RBM)组成,采用无监督学习算法训练参数,然后利用反向学习微调网络参数,进而优化BP神经网络的阈值和权值,通过训练模型求得最优解。实验表明,该预测模型克服了传统神经网络容易陷入局部最优以及函数拟合度不高的缺点,可有效提高交通流预测精度。
关键词: 交通流预测;深度学习;深度信念网络;BP神经网络;限制玻尔兹曼机
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。