面向司法案件的案情知识图谱自动构建
洪文兴1 胡志强1 翁洋2 张恒3 王竹4 郭志新5
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

洪文兴1 胡志强1 翁洋2 张恒3 王竹4 郭志新5,. 面向司法案件的案情知识图谱自动构建[J]. 冶金学报,2020.2. DOI:.
摘要:
以法学知识为中心的认知智能是当前司法人工智能发展的重要方向。该文提出了以自然语言处理(NLP)为核心技术的司法案件案情知识图谱自动构建技术。以预训练模型为基础,对涉及的实体识别和关系抽取这两个NLP基本任务进行了模型研究与设计。针对实体识别任务,对比研究了两种基于预训练的实体识别模型;针对关系抽取任务,该文提出融合平移嵌入的多任务联合的语义关系抽取模型,同时获得了结合上下文的案情知识表示学习。在"机动车交通事故责任纠纷"案由下,和基准模型相比,实体识别的F1值可提升0.36,关系抽取的F1值提升高达2.37。以此为基础,该文设计了司法案件的案情知识图谱自动构建流程,实现了对数十万份判决书案情知识图谱的自动构建,为类案精准推送等司法人工智能应用提供语义支撑。
关键词: 司法案件;知识图谱;实体识别;关系抽取
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。