一种基于卷积神经网络的快速说话人识别方法
蔡倩 高勇
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

蔡倩 高勇,. 一种基于卷积神经网络的快速说话人识别方法[J]. 无线电研究,2020.12. DOI:.
摘要:
提出了一种基于Gammatone滤波器倒谱系数(Gammatone Frequency Cepstral-Coefficients,GFCC)动态组合参数的卷积神经网络(Convolutional Neural Networks,CNN)结构来实现快速说话人识别的方法。提取语音样本的GFCC及其一阶差分和二阶差分系数作为代表语音的特征参数,对特征参数进行归一化处理,将得到的统计特征构造成CNN的输入形式。实验结果表明,与通用背景模型(Gaussian Mixture Model-Universal Background Model,GMM-UBM)相比,提出的模型方法学习速度更快,在提高识别率的同时减少了训练时间和识别时间。
关键词: ​动态组合参数说话人识别一阶差分二阶差分统计特征
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。