基于Bi-tagged特征的维吾尔文情感分类方法研究
摘要:
现有的维吾尔文文本情感分类方法以从空格分词中得到的unigram特征作为文本表示,因而无法挖掘与情感表达相关的深层语言现象。该文从维吾尔文词汇之间的顺序依赖关系入手,总结若干个词性组合规则,提取能够表达丰富情感信息的Bi-tagged特征,并基于支持向量机(SVM)分类器对维吾尔文情感语料库进行了正负情感分类。实验结果表明,在维吾尔文文本情感分类中:(1)当包含该文提出的各项词性规则时,Bi-tagged特征的性能最优;(2)Bi-tagged特征不仅能够提取情感丰富的信息,而且可以提取否定信息;(3)与常用的unigram、bigram特征以及unigram和bigram的组合特征在该文数据集上的分类效果相比,该文所提取的Bi-tagged与unigram的组合特征分类效果更佳,比该文的Baseline的分类准确率提高了4.225%。该研究成果不但可以进一步提高维吾尔文文本情感分类效率,也可为哈萨克语、柯尔克孜语等亲属语言的情感分类提供借鉴。