基于Bi-tagged特征的维吾尔文情感分类方法研究
热西旦木·吐尔洪太1,2 吾守尔·斯拉木1
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

热西旦木·吐尔洪太1,2 吾守尔·斯拉木1,. 基于Bi-tagged特征的维吾尔文情感分类方法研究[J]. 中文研究,2018.2. DOI:.
摘要:
现有的维吾尔文文本情感分类方法以从空格分词中得到的unigram特征作为文本表示,因而无法挖掘与情感表达相关的深层语言现象。该文从维吾尔文词汇之间的顺序依赖关系入手,总结若干个词性组合规则,提取能够表达丰富情感信息的Bi-tagged特征,并基于支持向量机(SVM)分类器对维吾尔文情感语料库进行了正负情感分类。实验结果表明,在维吾尔文文本情感分类中:(1)当包含该文提出的各项词性规则时,Bi-tagged特征的性能最优;(2)Bi-tagged特征不仅能够提取情感丰富的信息,而且可以提取否定信息;(3)与常用的unigram、bigram特征以及unigram和bigram的组合特征在该文数据集上的分类效果相比,该文所提取的Bi-tagged与unigram的组合特征分类效果更佳,比该文的Baseline的分类准确率提高了4.225%。该研究成果不但可以进一步提高维吾尔文文本情感分类效率,也可为哈萨克语、柯尔克孜语等亲属语言的情感分类提供借鉴。
关键词: 情感分类;Bi-tagged特征;组合特征;维吾尔文
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。