微博网络用户的活跃性判定方法
仲兆满1,2 戴红伟1 管燕1
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

仲兆满1,2 戴红伟1 管燕1,. 微博网络用户的活跃性判定方法[J]. 中文研究,2018.5. DOI:.
摘要:
推荐系统的冷启动问题是近期的研究热点,而用户的活跃性判定是冷启动问题的基础。已有方法在判定用户的活跃性时,单纯地考虑了用户发表信息量,对社交媒体的社交关系及行为等特征利用不够。该文面向微博网络,提出了系统的用户活跃性判定方法,创新性主要体现在:(1)提出了微博网络影响用户活跃性的四类指标,包括用户背景、社交关系、发表内容质量及社交行为,避免了仅仅使用用户发表信息数量判定用户是否活跃的粗糙方式;(2)提出了用户活跃性判定流程,提出了基于四类指标的用户与用户集的差异度计算模型。以新浪微博为例,选取了学术研究、企业管理、教育、文化、军事五个领域的900个用户作为测试集,使用准确率P、召回率R及F值为评价指标,进行了实验分析和比较。结果显示,该文所提用户活跃性判定方法的准确率P、召回率R、F值比传统的判定方法分别提高了21%、13%和16%,将该文所提方法用于用户推荐,得到的P、R和F值比最新的方法分别提高了5%、2%和3%,验证了所提方法的有效性。
关键词: 微博推荐系统用户活跃性判定用户背景用户社交关系用户发表内容质量用户社交行为
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。