基于密度及文本特征的新闻标题抽取算法
彭圳生1,2 巩青歌1 高志强1,2 段妍羽1 曾子贤1
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

彭圳生1,2 巩青歌1 高志强1,2 段妍羽1 曾子贤1,. 基于密度及文本特征的新闻标题抽取算法[J]. 中文研究,2018.8. DOI:.
摘要:
为从大量的复杂非规范网页结构中自动抽取出新闻标题,该文提出一种基于密度和文本特征的新闻标题抽取算法(title extraction with density and text-features,TEDT)。主要通过融合网页文本密度分布和语言特征的语料判定模型,将网页划分为语料区和标题候选区,选取语料后通过TextRank算法计算对应的key-value权重集合,最后采用改进的相似度计算方法从标题候选区抽取新闻标题。该算法能有效划分语料和标题区域,降低网页噪声干扰,准确抽取出新闻标题。实验结果表明,TEDT的准确率和召回率均优于传统的基于规则和相似度的新闻标题抽取算法,证明了TEDT不仅对主流新闻网站有效,而且对复杂非规范网页也广泛适用。
关键词: 标题抽取密度分布文本特征信息检索
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。