一种基于数据重构和富特征的神经网络机器阅读理解模型
尹伊淳 张铭
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

尹伊淳 张铭,. 一种基于数据重构和富特征的神经网络机器阅读理解模型[J]. 中文研究,2018.10. DOI:.
摘要:
该文描述了ZWYC团队在"2018机器阅读理解技术竞赛"上提出的机器理解模型。所提出模型将机器阅读理解问题建模成连续文本片段抽取问题,提出基于富语义特征的神经交互网络模型。为了充分使用答案标注信息,模型首先对数据进行细致的重构,让人工标注的多个答案信息都能融合到数据中。通过特征工程,对每个词构建富语义表征。同时提出一种简单有效的问题和文档交互的方式,得到问题感知的文档表征。基于多个文档串接的全局表征,模型进行答案文本预测。在最终测试集上,该模型获得了目前先进的结果,在105支队伍中排名第2。
关键词: 机器阅读理解数据重构神经网络
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。