基于文本和用户信息的在线评论质量检测
吴璠 王中卿 周夏冰 李寿山 周国栋
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

吴璠 王中卿 周夏冰 李寿山 周国栋,. 基于文本和用户信息的在线评论质量检测[J]. 中文研究,2019.1. DOI:.
摘要:
随着互联网的迅速发展,越来越多的用户评论出现在社交网站上。面对迅速增长的评论数据,如何为阅读评论的消费者提供准确、真实的高质量评论就显得尤为重要。评论质量检测旨在判断在线评论的质量,在传统的研究中,文本信息通常独立地被用于预测评论质量。但是在社交媒体上,每个文本之间不是独立的,而是可以通过发表文本的作者与其他文本相关联,即同一个用户或相近的用户发表的评论质量具有一定的相似性。因此,为了更好的构建文本的表示和研究文本之间基于用户的关联,该文基于神经网络模型分别构建用户和文本的表示,同时,为了放大用户信息的作用,我们进一步将基于注意力机制的用户信息融合到文本中,从而提高文本评论质量检测的效果。在Yelp 2013数据集上进行实验的结果表明,该模型能有效地提高在线评论质量检测的性能。
关键词: 评论质量用户表示神经网络模型注意力机制
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。