融合图结构与节点关联的关键词提取方法
马慧芳1,2 王双1 李苗1 李宁3
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

马慧芳1,2 王双1 李苗1 李宁3,. 融合图结构与节点关联的关键词提取方法[J]. 中文研究,2019.2. DOI:.
摘要:
单篇文本的关键词提取可应用于网页检索、知识理解与文本分类等众多领域。该文提出一种融合图结构与节点关联的关键词提取方法,能够在脱离外部语料库的情况下发现单篇文本的关键词。首先,挖掘文本的频繁封闭项集并生成强关联规则集合;其次,取出强关联规则集合中的规则头与规则体作为节点,节点之间有边当且仅当彼此之间存在强关联规则时,边权重定义为关联规则的关联度,将强关联规则集合建模成关联图;再次,综合考虑节点的图结构属性、语义信息和彼此的关联性,设计一种新的随机游走算法计算节点的重要性分数;最后,为了避免抽取的词项之间有语义包含关系,对节点进行语义聚类并选取每个类的类中心作为关键词提取结果。通过设计关联图模型参数的选取、关键词的提取规模、不同算法对比3个实验,在具有代表性的中英文数据上证明了该方法能够有效提升关键词提取的效果。
关键词: 关键词提取;随机游走;节点属性;语义信息;节点关联
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。