基于联合学习的跨领域法律文书中文分词方法
江明奇 严倩 李寿山
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

江明奇 严倩 李寿山,. 基于联合学习的跨领域法律文书中文分词方法[J]. 中文研究,2019.3. DOI:.
摘要:
中文分词任务是自然语言处理的一项基本任务。但基于统计的中文分词方法需要大规模的训练样本,且拥有较差的领域适应性。然而,法律文书涉及众多领域,对大量的语料进行标注需要耗费大量的人力、物力。针对该问题,该文提出了一种基于联合学习的跨领域中文分词方法,该方法通过联合学习将大量的源领域样本辅助目标领域的分词,从而提升分词性能。实验结果表明,在目标领域标注样本较少的条件下,该文方法的中文分词性能明显优于传统方法。
关键词: 中文分词法律文书联合学习
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。