融合注意力机制的多通道卷积与双向GRU模型的文本情感分析研究
摘要:
文本情感分析作为自然语言处理领域的一大分支,具有非常高的研究价值。该文提出了一种基于多通道卷积与双向GRU网络的情感分析模型。该模型首先使用多通道卷积神经网络对文本不同粒度的特征信息进行提取,提取后的特征信息经过融合送入双向GRU中,结合注意力机制获得文本的上下文情感特征,最后由分类器给出文本的情感倾向。注意力机制自适应的感知上下文信息进而提取对情感极性影响较强的特征,在模型的基础上引入Maxout神经元,解决模型训练过程中的梯度弥散问题。模型在IMDb及SST-2数据集上进行实验,实验结果表明本文模型较CNN-RNN模型在分类精确度上有了一定程度的提升。