基于Gate-ResNet-D模型的远程监督关系提取方法
袁祯祺1 宋威1 陈璟1,2
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

袁祯祺1 宋威1 陈璟1,2,. 基于Gate-ResNet-D模型的远程监督关系提取方法[J]. 中文研究,2019.5. DOI:.
摘要:
在实体关系抽取任务中,通常采用远程监督(distant supervision,DS)数据集,远程监督方法能通过大规模语料库自动标注数据来扩张数据集,但这无疑会使数据集充满大量的噪声。为此,该文将深度残差网络(deep residual network,ResNet)应用到关系提取的远程监督数据集上,通过加深网络层数来提高模型降噪能力。同时,提出了Gate模块,有效提高了深度残差网络的性能。该模块可以学习到每个特征通道的重要性,通过权重增强或抑制各个特征通道的比重,从而防止过拟合。另外,为了进一步解决数据集降噪问题,还提出了一种双池化层的池化层新方案。实验结果表明所提方法相比于目前效果较好的PCNN+ATT模型,在准确率和召回率上都有3%左右的提升。
关键词: 实体关系提取远程监督深度残差网络
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。