EntropyRank:基于主题熵的关键短语提取算法
尹红 陈雁 李平
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

尹红 陈雁 李平,. EntropyRank:基于主题熵的关键短语提取算法[J]. 中文研究,2019.7. DOI:.
摘要:
关键短语提取是自然语言处理领域的一个重要子任务,其目的是自动识别出文本中的重要短语,现有方法主要强调词语间相关关系和词语自身影响力会影响关键短语提取效果。考虑到关键短语应准确地表示文档主题这一特点,该文提出一种基于主题熵的关键短语提取算法。该算法利用隐含狄利克雷分布训练文档和词的主题分布,并结合两个主题分布来表示特定文档下的词主题分布,然后计算词主题分布的信息熵即主题熵来表示词语自身影响力,最后在词共现网络上使用随机游走方法计算每个候选短语的得分。在6个公开数据集上的实验结果表明,与现有的无监督关键短语提取算法相比,该算法在F1指标上能提高2.61%~6.98%。
关键词: 关键短语提取随机游走主题模型词语影响力
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。