摘要:
目前,老挝语词性标注研究处于初期,可用标注语料有限,且老挝语吸收了多种外来词,导致标注语料库存在大量稀疏词。多任务学习是有效识别稀疏词的一种方法,该文研究了老挝词的结构特征,并构建了结合词性标注损失和主辅音辅助损失的多任务老挝语词性标注模型。老挝词有很多词缀可以表达词性信息,因此模型还采用了字符级别的词向量来获取这些词缀信息。特别地,老挝语的句式较长,模型用注意力机制防止长远上下文特征丢失。实验结果表明:相比其他研究方法,该模型的词性标注准确率在有限标注语料下取得更好的表现(93.24%)。