基于多通道双向长短期记忆网络的情感分析
李卫疆 漆芳
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

李卫疆 漆芳,. 基于多通道双向长短期记忆网络的情感分析[J]. 中文研究,2019.10. DOI:.
摘要:
当前存在着大量的语言知识和情感资源,但在基于深度学习的情感分析研究中,这些特有的情感信息,没有在情感分析任务中得到充分利用。针对以上问题,该文提出了一种基于多通道双向长短期记忆网络的情感分析模型(multi-channels bidirectional long short term memory network,Multi-Bi-LSTM),该模型对情感分析任务中现有的语言知识和情感资源进行建模,生成不同的特征通道,让模型充分学习句子中的情感信息。与CNN相比,该模型使用的Bi-LSTM考虑了词序列之间依赖关系,能够捕捉句子的上下文语义信息,使模型获得更多的情感信息。最后在中文COAE2014数据集、英文MR数据集和SST数据集进行实验,取得了比普通Bi-LSTM、结合情感序列特征的卷积神经网络以及传统分类器更好的性能。
关键词: 情感分析长短期记忆多通道层归一化
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。