基于医疗知识图谱的并发症辅助诊断
刘勘 张雅荃
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

刘勘 张雅荃,. 基于医疗知识图谱的并发症辅助诊断[J]. 中文研究,2020.3. DOI:.
摘要:
为了实现文本描述中的快速并发症的准确预判,该文结合知识图谱、表示学习、深度神经网络等方法构建了一个并发症辅助诊断模型。该模型首先构建医疗领域的知识图谱,并通过知识表示模型对医疗领域知识进行编码,结合患者主诉文本获取患者症状实体的表示向量,再将患者主诉表示向量和指标表示向量通过CNN-DNN网络对并发症进行辅助诊断。实验选取了糖尿病的3种并发症:高血压、糖尿病肾病和糖尿病视网膜病变作为测试。该文模型的准确率对比支持向量机、随机森林和单独的深度神经网络在高血压、糖尿病肾病和糖尿病视网膜病变上分别提高了5%、5%、14%和27%、6%、9%,说明该文模型能够充分融合医疗知识图谱和深度学习技术,对提高并发症的诊断起到积极作用。
关键词: 知识图谱表示学习深度学习辅助诊断
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。