基于同义词词林和预训练词向量的微调方法
佘琪星1 王必聪1 刘铭1,2 秦兵1,2 王莉峰3
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

佘琪星1 王必聪1 刘铭1,2 秦兵1,2 王莉峰3,. 基于同义词词林和预训练词向量的微调方法[J]. 中文研究,2020.5. DOI:.
摘要:
同义词挖掘是自然语言处理领域中的一个基础任务,而同义词对的判别是该任务的一个重要部分。传统两大类方法,基于分布式表示和基于模板的方法,分别利用了语料的全局统计信息和局部统计信息,只能在精确率和召回率中权衡。随着预训练词向量技术的发展,基于分布式表示的方法存在一种简单高效的方案,即直接对预训练好的词向量计算相似度,将此表示为语义相似度。然而,这样的思路并没有利用到现有的同义词对这一外部知识。该文提出基于《同义词词林》的词向量微调方法,利用同义词对信息,增强预训练词向量的语义表示。经过实验,该微调方法能很好地完成同义词对的判别。
关键词: 同义词挖掘;预训练词向量;语义表示;微调
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。