基于知识图谱的在线商品问答研究
王思宇1 邱江涛1 洪川洋1 江岭2
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

王思宇1 邱江涛1 洪川洋1 江岭2,. 基于知识图谱的在线商品问答研究[J]. 中文研究,2020.5. DOI:.
摘要:
现阶段,针对商品的自动问答主要由意图识别和答案配置来实现,但问题答案的配置依赖人工且工作量巨大,容易造成答案质量不高。随着知识图谱技术的出现和发展,基于知识图谱的自动问答逐渐成为研究热点。目前,基于知识图谱的商品自动问答主要是通过规则解析的方法将文本形式问题解析为知识图谱查询语句来实现。虽然减少了人工配置工作,但其问答效果受限于规则的质量和数量,很难达到理想的效果。针对上述问题,该文提出一种基于知识图谱和规则推理的在线商品自动问答系统。主要贡献包括:(1)构建一个基于LSTM的属性注意力网络SiameseATT(Siamese attention network)用于属性选择;(2)引入了本体推理规则,通过规则推理使得知识图谱能动态生成大量三元组,使得同样数据下可以回答更多问题。在NIPCC-ICCPOL 2016 KBQA数据集上的实验显示,该系统具有很好的性能。相比一些更复杂的模型,该问答系统更适合电商的应用场景。
关键词: 问答系统知识图谱注意力机制规则推理
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。