基于深度神经网络的诗词检索
梁健楠1,2,3 孙茂松1,2,3 矣晓沅1,2,3
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

梁健楠1,2,3 孙茂松1,2,3 矣晓沅1,2,3,. 基于深度神经网络的诗词检索[J]. 中文研究,2020.8. DOI:.
摘要:
中国古典诗词是中国古典文学的代表之一,是中华传统文化的宝藏,源远流长。中国古典诗词研究是自然语言处理方向的一项重要且富有意义的工作。随着人工智能的发展,人工神经网络在图像、文本等领域得到广泛的应用,取得了显著的突破,给人工智能与中国古典诗词相结合提供了新的思路和方法。让机器去理解中国古典诗词的韵律和意境是一项极具挑战的工作,其中,通过研究诗词的相似性来提升机器对诗词的理解这一研究课题被赋予了更为重要的意义。诗词检索是对诗词内容做对比,查找出在语义和意境上相接近的诗词,这要求对整首诗词的内容和意境有深入的理解。该文模型以数十万首古诗作为基础,利用循环神经网络(RNN)自动学习古诗句的语义表示,并设计了多种方法自动计算两首诗之间的关联性,以此计算两首诗词之间的语义距离,实现诗词的推荐。自动评测和人工评测的实验结果都表明,该文模型能够生成质量较好的诗词检索结果。
关键词: 神经网络中国古典诗词诗词检索
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。