基于HRED模型的中文多轮对话任务方法研究
王孟宇 俞鼎耀 严睿 胡文鹏 赵东岩
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

王孟宇 俞鼎耀 严睿 胡文鹏 赵东岩,. 基于HRED模型的中文多轮对话任务方法研究[J]. 中文研究,2020.11. DOI:.
摘要:
多轮对话任务是自然语言处理中最具有实用价值的技术之一,该任务要求系统在产生通顺回答语句的同时能够照顾到上下文信息。近年来,出现了一大批以HRED(hierarchical recurrent encoder-decoder)模型为基础的多轮对话模型,其运用多层级的循环神经网络来编码上下文信息,并在Movie-DiC等英文对话数据集上取得了不错的结果。在2018年京东举办的中文多轮对话大赛中,京东向参赛选手公布了一批高质量的真实客服对话语料。该文在此数据上进行实验,针对HRED模型的缺点以及在中文语料下的表现进行改进,提出基于注意力和跨步融合机制与HRED模型结合的方案,实验结果表明,该方案取得了较大的性能提升。
关键词: 多轮对话生成式模型自然语言处理
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。