融合空洞卷积神经网络与层次注意力机制的中文命名实体识别
陈茹1,2 卢先领2,3
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

陈茹1,2 卢先领2,3,. 融合空洞卷积神经网络与层次注意力机制的中文命名实体识别[J]. 中文研究,2020.11. DOI:.
摘要:
该文针对现有的命名实体识别(named entity recognition,NER)模型未考虑到文本层次化结构对实体识别的重要作用,以及循环神经网络受其递归性的限制导致计算效率低下等问题,构建了IDC-HSAN模型(Iterated Dilated Convolutions Neural Networks and Hierarchical Self-attention Network)。该模型通过迭代的空洞卷积神经网络(ID-CNN)充分利用GPU的并行性大大降低了使用长短时记忆网络的时间代价。然后,采用层次化注意力机制捕获重要的局部特征和全局上下文中的重要语义信息。此外,为了丰富嵌入信息,加入了偏旁部首信息。最后,在不同领域数据集上的实验结果表明,IDC-HSAN模型能够从文本中获取有用的实体信息,和传统的深度网络模型、结合注意力机制的命名实体识别模型相比识别效果有所提升。
关键词: 注意力机制迭代空洞卷积神经网络中文命名实体识别
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。