检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
PDF下载
融合评论主题信息的可解释推荐
侯雲峰
四川大学计算机学院
摘要:
可解释推荐成为近年来推荐系统领域的一个热点研究话题。然而,现有的可解释推荐方法并不能定量地为推荐结果做出解释。为了解决这个问题,提出一种基于主题的矩阵分解模型。模型量化用户在特定主题上的偏好程度,并且能将用户主题偏好信息用于提升推荐的性能。最终通过一系列实验验证模型的推荐性能和解释能力。
关键词:
主题模型;推荐系统;矩阵分解
;
主题模型;推荐系统;矩阵分解
DOI:
基金资助:
文章地址: