检索
AI智能检索
学术期刊
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
按期刊分类
医药卫生
(21)
工程技术
(38)
数学与物理
(12)
经济与管理
(12)
人文社科
(41)
化学与材料
(9)
信息通讯
(10)
地球与环境
(25)
生命科学
(2)
PDF下载
面向不平衡数据流的自适应加权在线超限学习机算法
梅颖 卢诚波
丽水学院工学院
摘要:
一般的在线学习算法对不平衡数据流的分类识别会遇到较大困难,特别是当数据流发生概念漂移时,对其进行分类会变得更困难.文中提出面向不平衡数据流的自适应加权在线超限学习机算法,自动调整实时到达的训练样本的惩罚参数,达到在线学习不平衡数据流的目的.文中算法可以适用于不同偏斜程度的静态数据流的在线学习和发生概念漂移时数据流的在线学习.理论分析和在多个真实数据流上的实验表明文中算法的正确性和有效性.
关键词:
不平衡学习;数据流;在线学习;加权超限学习机(W-ELM);概念漂移
DOI:
基金资助:
文章地址:
版权所有 © 2025 世纪中文出版社
京ICP备2024086036号-2