基于BP神经网络的时栅时序预测测量研究
摘要: 为了将时栅应用于全闭环数控系统,需完成时栅信号由时域到空域的转换。通过BP神经网络预测模型找出实测数据中的隐含规律进而建立起样本和未来实测数据的映射关系,预测出下一个周期内时栅的测量角度值,实现时栅绝对式角度值与光栅数控系统所需的增量式连续脉冲的转换;为了保证测量精度,利用当前测量值对上一次的预测误差进行校正。实验表明:基于BP神经网络预测算法的时栅系统可以实现时域信号向空域信号的转换,且误差精度为±2″,满足了数控系统对测量精度的要求。
关键词:
时栅;数控系统;时空转换;预测测量;BP神经网络;误差修正;
时栅;数控系统;时空转换;预测测量;BP神经网络;误差修正