检索
AI智能检索
学术期刊
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
按期刊分类
医药卫生
(21)
工程技术
(38)
数学与物理
(12)
经济与管理
(12)
人文社科
(41)
化学与材料
(9)
信息通讯
(10)
地球与环境
(25)
生命科学
(2)
PDF下载
大数据中基于混合协同过滤的动态用户个性化推荐
刘珊珊
广州华南商贸职业学院
摘要:
为了提高大数据中动态用户个性化推荐的准确性和效率,采用基于混合协同过滤的方法来完成用户感兴趣数据的筛选,从而实现个性化推荐。先将用户数据及项目数据通过协同过滤算法来完成建模并评分,然后结合XGBoost模型的树形结构和正则学习的特点进行预测评分,接着将两种算法混合来求解最优目标函数,得到候选的推荐数据集合。最后通过实例仿真,混合算法精确度高,在大数据平台有较强的适用性。
关键词:
大数据;协同过滤;XGBoost;个性化推荐;准确率
DOI:
基金资助:
文章地址:
版权所有 © 2025 世纪中文出版社
京ICP备2024086036号-2