文章标题
作者姓名
关键词
单位名称
检索
AI智能检索
学术期刊
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
按期刊分类
医药卫生
(24)
工程技术
(42)
数学与物理
(12)
经济与管理
(12)
人文社科
(44)
化学与材料
(9)
信息通讯
(10)
地球与环境
(25)
生命科学
(2)
首页
>
基于混合表示的中文事件检测方法研究
DOI
:
,
PDF
下载:
59
浏览: 384
作者
:
秦彦霞1
;
王中卿2
;
郑德权1
;
张民2
;
作者单位
:
1.哈尔滨工业大学计算机科学与技术学院;2.苏州大学计算机科学与技术学院
;
关键词
:
中文
;
事件检测
;
神经网络
;
混合表示
;
摘要:
传统中文事件检测方法采用人工定义的特征表示候选触发词,耗时耗力。基于神经网络的特征学习方法在中英文事件检测任务中得到了验证。现有的基于神经网络的中文事件检测方法初步探索了字信息对解决分词错误的作用。字是中文的最小结构单元和语义表示单元。词语的字符级信息能够提供词语的结构性信息和辅助词语级语义。该文研究了字/词混合神经网络特征对于解决中文事件数据集未登录词问题的作用。采用神经网络模型分别学习词语的词语级表示和字符级表示,进而拼接得到词语的混合表示。实验结果表明,基于字/词混合表示的中文神经网络事件检测模型的F1值比当前最好的模型高2.5%。
投稿
相关文章
自粘接流动树脂的研究进展
中医药治疗胃癌的分子机制及重塑免疫微环境的研究进展
智能化消防技术在老旧建筑安全保障中的应用
易经对数学的启示
一种预警性医用输液贴的设计与效果评价
学术共建
清华大学出版社
北大中文系
国家工程技术数字图书馆
维普网
万方数据库
版权所有 © 2025 世纪中文出版社
京ICP备2024086036号-2